法搜网--中国法律信息搜索网
工业和信息化部关于申报“高档数控机床与基础制造装备”科技重大专项2013年度课题的通知

  中央财政投入经费支持方式:前补助。
  6、申报条件
  课题牵头单位应是国内飞机制造企业,具有较强的技术基础和技术开发队伍,具有较完善的试验、生产条件;申报单位须针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报年度课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过8家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。

课题3 飞机复杂结构件数控加工成套生产线

  1、研究目标
  推进“十一五”重大专项主机类产品的产业化,集成“十一五”进行的切削工艺、刀具的相关研究及各科技计划进行的有关数据库成果,通过航空结构件加工工艺、中高档数控产品开发和关键技术、航空结构件成线技术等研究,提升国产数控系统和国产数控机床的综合性能,提高航空结构件/系统件的加工效率和加工质量,实现国产中高档数控机床在航空领域的广泛应用;同时针对网络化管理系统、设备状态实时监控、设备保障体系等成线关键技术开展研究。在航空制造企业内应用国产中高档数控机床建成面向航空结构件/系统件加工的生产线并进行示范推广,为国产中高档数控机床设计制造水平提升提供支撑。
  2、考核指标
  (1)开发及应用不少于4个种类、45台以上面向飞机结构件加工的高档数控机床。
  (2)完成钛合金/铝合金航空结构件高效加工工艺技术研究,形成支撑生产线运行的数据库。研究内容包括基于三维模型的工艺设计技术、国产数控机床加工仿真技术、国产设备后置优化技术、建立切削参数数据库等,以上研究内容需在本课题研发的生产线上进行验证。
  (3)完成国产高档数控机床DNC传输及监控管理系统、生产制造及执行管理系统、集成物流系统、自动上下料、半自动化搬运、生产线集成关键技术等技术研究,以上研究内容需在本课题研发的生产线上进行验证。
  (4)组建飞机结构件数控加工成套生产线,实现基于MES的生产线集成;该生产线设备供应单位至少包括两家以上国产数控系统厂家,三家以上主机厂。所有设备中国产数控系统配套比例不低于50%,国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配三种,不包括自制及集团内部单位配套部件)配套比例率不低于30%,国产刀具配套比例不低于80%。
  (5)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
  (6)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
  (7)满足用户使用要求,所有机床在用户处实际应用一年以上方可申请验收。
  (8)形成20项以上技术标准(企业标准、行业标准、国家标准)、30项以上发明专利。
  (9)课题牵头单位建立起不少于30人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人50人以上。
  3、研究内容
  利用重大专项在数控系统、国产功能部件、可靠性技术方面的研究成果,开发面向航空结构件的五轴联动钛合金强力切削机床、高速多轴联动立卧式加工中心及精速高效数控车床及车削中心,配以自动化物流系统,形成加工飞机大型钛合金结构件生产线,加工铝合金结构件生产线,加工精密系统结构件生产线。
  进行钛合金/铝合金航空结构件高效加工工艺技术研究,包括基于三维模型的工艺设计技术研究、国产数控机床加工仿真技术研究、国产设备后置优化技术研究、多轴联动数控加工快速装夹技术研究、切削参数数据库构建技术研究等。
  面向多系列航空结构件加工的国产高档数控机床成线支撑技术研究,包括国产高档数控机床DNC传输及监控管理系统研究、生产制造执行及管理系统、航空结构件的加工生产线集成关键技术等研究
  4、实施期限
  2013年1月-2016年12月
  5、课题设置及经费要求
  拟支持1项课题研究;中央财政投入经费应主要用于产品关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
  中央财政投入经费支持方式:前补助。
  6、申报条件
  课题牵头单位应为国内机床制造企业,具有上述领域的研究基础,具备较强的专业研发团队和完善的试验、研究和开发条件。申报单位须针对指南提出的全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报年度课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过8家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。

课题4 飞机钛合金尾段制造关键成套装备及示范应用

  1、研究目标
  针对飞机钛合金尾段制造装备能力瓶颈,研发大型钛合金薄壁构件塑性成形、高效焊切、清洁热处理、数字化装配的成套装备与技术,实现钛合金尾段的精准制造,完成典型零件的生产应用,提升飞机关键制造装备的自主保障能力。
  2、考核指标
  (1)突破钛合金薄壁构件高效等温热成形、双作用激光焊接、高真空热处理并联五轴自动钻铆等关键工艺,开发钛合金塑性成形、高效焊切、清洁热处理、数字化装配四大工艺9台套关键制造装备,形成飞机钛合金零部件关键制造装备自主保障能力。
  1)开发钛合金薄壁件拉伸成形装备1台。将钛合金薄壁件热拉伸成形工艺和热蠕变成形工艺相结合,实现高强低塑钛合金薄壁件的一次精确成形,贴模精度小于0.3mm。
  2)开发钛合金型材精密三维拉弯装备1台。突破空间复杂钛合金型材的精确成形工艺,拉伸精度:±1mm。
  3)开发钛合金薄壁结构大型超塑成形/扩散连接装备1台。针对飞机大尺寸多层空心构件,采用超塑成形/扩散连接技术实现一次性整体成形,主机公称压力9000KN,工作台尺寸2500×1800mm,最高工作温度1050℃。
  4)开发飞机钛合金构件等温热成形成套装备1套。实现模具在热态下的快速装卡以及预热、成形、缓冷环节的热态转运,较进口单台热成形设备的生产效率提高2倍以上。
  5)开发整体壁板T型接头双作用激光焊接装备1台。突破薄壁板焊接热变形控制工艺瓶颈,具备筋条自动定位压紧和焊缝自动跟踪功能,实现钛合金整体壁板T型接头空间曲线一次焊接双侧成型,加工范围4000mm×2300mm×750mm。
  6)开发飞机钛合金承力结构件激光修复装备1台。实现飞机钛合金承力结构件的激光快速再制造,节约制造成本,行程5000 mm×2500 mm×1500mm。
  7)开发超高压水切割设备1台。实现大厚度、大尺寸钛合金板材高效切割加工及大型结构件的轮廓粗加工,最大切割厚度100mm。
  8)开发超大钛合金结构件高真空热处理设备1套。解决超大钛合金壁板类、框类等真空除氢、消除应力热处理问题,实现超大钛合金零件的均衡受热,提高热处理生产效率,有效加热区5000mm×2400mm×1200mm。
  9)开发并联五轴高速高效自动制孔铆接系统1台。实现飞机钛合金尾段高效高精度快速制孔、锪窝、装钉、铆接、铣平等工艺,工作范围5000mm×5000mm×2000mm。
  (2)结合专项前期成果,针对大厚度钛合金结构件开展高压真空电子束焊接装备示范应用,设备真空室尺寸8500mm×4000mm×2500mm;针对变厚度钛合金方形件焊接及壁板加强筋焊接,开展激光-电弧(TIG)复合焊接设备示范应用,加工范围4000mm×2700mm×1000mm。
  (3)开展针对钛合金塑性成形、焊切、热处理、装配制造工艺优化与集成技术研究。结合工艺优化结果,对上述设备的设计制造提出6-8项优化方案。
  (4)提供用上述装备制造的飞机钛合金典型零部件50件以上。
  (5)每一台(套)设备交付用户使用前,应在设备制造企业处进行2000小时以上模拟实际工况运行试验,并编写试验报告。
  (6)课题牵头单位应对投入实际使用的每一台(套)设备的运行故障予以记录,并形成故障统计和分析报告。
  (7)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
  (8)形成20项以上技术标准(企业标准、行业标准、国家标准)、30项以上发明专利。
  (9)课题牵头单位建立起不少于30人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人50人以上。
  3、研究内容
  (1)开发飞机钛合金尾段制造关键成套装备。围绕钛合金塑性成形、高效焊切、清洁热处理和数字化装配工艺,开展钛合金薄壁件拉伸成形、大型构件热成形和超塑成形/扩散连接、超大厚度结构件电子束焊接、承力结构件激光修复、大厚度大尺寸钛合金板材高压水切割、高真空度超大结构件真空热处理、并联五轴自动制孔铆接、整体壁板T型接头双作用激光焊接及变厚度结构件激光-电弧复合焊接等工艺技术研究,突破相关装备关键技术,开发关键装备。
  (2)研究钛合金构件制造工艺优化与集成技术。基于上述设备,针对钛合金构件制造流程,开展工艺研究,包括基于三维模型的工艺设计技术、工艺参数与知识库技术、工艺仿真技术、工艺与装备融合的集成控制与监测技术、基于轻量化模型的设备使用与维修三维可视化技术、面向航空应用的装备规范化设计技术。
  4、实施期限
  2013年1月-2016年12月
  5、课题设置和经费安排
  拟支持1项课题研究,中央财政投入应主要用于关键技术研究、工艺技术研究、关键技术装备研制等,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
  中央财政投入经费支持方式:前补助。
  6、申报条件
  课题牵头单位应为国内飞机制造企业,在钛合金零部件生产上具有较强的技术基础和较显著的工作业绩,合作单位在研发钛合金零件制造成套设备和技术具有良好的前期储备,具有完善的试验基本条件和专业团队;申报单位须针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报年度课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过8家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。

课题5 航空发动机叶片数控磨削加工单元

  1、研究目标
  根据叶片不同区域特征,开发航空发动机叶片全型面无余量/小余量磨削加工单元,包括叶身磨削、进排气边自适应磨削、榫头加工和型面抛光,将叶片数控磨削与叶片在机测量结合起来实现叶片复杂型面精密加工。在满足叶身加工、叶片前后缘加工精度的基础上,实现300mm长度叶片磨削时间不超过60分钟/片的效率要求。
  2、考核指标
  (1)研制叶片数控磨削机床2台,叶片抛光设备1台。
  (2)技术指标: 300mm长度叶片磨削扭转变形量±8'、叶身加工精度<0.03mm、叶片前后缘加工精度<0.05mm、表面粗糙度Ra≤0.4μm、叶片型面线轮廓度≤0.05mm、叶片型面波纹度≤0.01mm;效率指标:磨削加工300mm以下长度叶片的工时不超过60分钟/片;
  (3)完成1条叶片磨削生产单元建设、完成4-8种叶片200件以上的磨削加工生产验证;单台机床MTBF≥1500h,Tk≥15000h;至少一台采用国产数控系统、国产功能部件和国产磨料磨具。
  (4)每一台(套)机床、数控系统交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上的模拟实际工况运行试验,并编写试验报告。
  (5)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统的运行故障予以记录,并形成故障统计和分析报告。
  (6)满足用户使用要求,所有机床在用户处实际应用一年以上方可申请验收。
  (7)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
  (8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
  3、研究内容
  叶片全型面(包含叶身、进排气边、榫头)磨削加工生产线数字化、模块化设计、制造、控制及数据管理技术;叶片磨削成套夹具设计制造及叶片磨削加工变形抑制技术;叶片在机检测及自适应磨削技术;叶片自动抛光工艺技术研究;磨削、抛光表面质量控制及工艺参数优化技术;叶片磨削及抛光工艺过程优化技术;高效高精度叶片检测技术;提出提高生产线可靠性和加工精度稳定性的方法,开展相关技术规范或技术标准研究。
  4、实施期限
  2013年1月-2015年12月
  5、课题设置及经费要求
  拟支持1项课题研究;中央财政投入经费应主要用于关键技术研究、性能测试与工艺技术研究,自筹与地方配套资金合计数与中央财政投入经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
  中央财政投入经费支持方式:前补助。
  6、申报条件
  课题牵头单位应是国内航空发动机制造企业或机床制造企业,在复杂曲面磨削机床制造、工艺研究和检测技术等领域具有较强的技术基础和技术开发队伍。申报单位须针对指南提出的全部研究内容和考核指标进行申报;牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报年度课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。

课题6 超快激光微细加工机床

  1、研究目标
  研发航空发动机关键部件微孔冷加工工艺的数控机床,开展高功率超快激光数控机床的性能和可靠性研究,建立不同材料的航空发动机叶片、火焰筒、喷油嘴等关键部件微孔加工的工艺数据库,增强超快激光器技术水平及国产高端高档数控机床的成套能力。
  2、考核指标
  (1)研究开发3套针对航空发动机不同零件微孔加工的皮秒激光数控机床和1套针对碳化硅陶瓷基复合材料(CMC-SiC材料)微孔加工的飞秒激光数控机床。其中皮秒激光器平均功率:≥50瓦;脉冲宽度:≤10ps;飞秒激光器平均功率:≥20瓦;脉冲宽度:≤500fs。加工圆孔孔径范围:200微米-1500微米;孔径精度:≤2%孔径;深宽/孔径比:≥20:1;加工效率:≥0.002立方毫米/秒;具有簸箕孔、异型槽等加工功能。
  (2)皮秒激光数控机床的微孔加工工艺:在国际航空检测标准下,满足镍基单晶材料加工无重铸层、无微裂纹、无再结晶等指标,形成一套完整的加工工艺方法和工艺参数数据库(容量≥1GB)。
  (3)飞秒激光数控机床的微孔加工工艺:解决战略型CMC-SiC耐高温材料微孔(直径1mm以下)、微槽等微加工无法加工的技术空白,实现加工后的微孔无氧化层、无微裂纹等目标,形成一套完整的加工工艺方法和工艺参数数据库(容量≥1GB)。
  (4)皮秒激光数控机床和飞秒激光数控机床在至少1家航空发动机公司进行示范应用。
  (5)课题牵头单位应对投入实际使用的每一台机床的运行故障予以记录,并形成故障统计和分析报告。
  (6)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
  (7)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
  (8)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
  3、研究内容
  通过提升高功率皮秒激光器、飞秒激光器、复合光学扫描模块等超快激光数控机床关键部件的各项性能指标及可靠稳定性,集成开发稳定可靠的(皮秒、飞秒)数控机床;针对航空发动机镍基单晶叶片气膜孔、燃烧室喷油嘴,火焰筒等零部件,研究开发皮秒激光微孔无重铸层、无微裂纹加工机床和工艺解决方案;针对耐高温碳化硅陶瓷基材料的直径小于1mm的微孔加工工艺难题,研究开发飞秒激光高质量微孔加工机床及工艺方法;建立航空发动机关键部件和战略型耐高温碳化硅陶瓷基材料的加工工艺数据库。
  4、实施期限
  2013年1月-2015年1月
  5、课题设置及经费要求
  拟支持1项课题研究;中央财政投经费主要用于产品关键技术研究、性能测试、工艺技术研究与检测验证;自筹与地方配套资金合计数与中央财政经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
  中央财政投入经费支持方式:前补助。
  6、申报条件
  课题牵头单位应是国内航空发动机制造企业或机床制造企业,课题牵头单位须有研发超快激光数控机床整机开发的基础,具备较完善的试验、激光器制造条件;申报单位应针对指南全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报年度课题单位应具备的可靠性研究基本条件)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。要求落实最终用户。

课题7 中小型航空发动机零件铣车加工、检测关键装备研制

  1、研究目标
  针对中小型航空发动机叶片、叶轮、机匣、盘、轴等关键零件铣削、车削加工和检测的特殊要求,研制中小叶片、叶轮、机匣类零件的五轴加工中心、盘类零件超硬车削机床、细长轴类双主轴双刀塔车削中心,掌握高性机床结构分析设计制造、高速五轴铣削控制及在线测量技术,弱刚性零件定位夹紧、工艺参数优化等技术,并在航空发动机制造企业应用。机床功能、主要技术参数、工作可靠性和稳定性达到国际先进水平。
  2、考核指标
  研制航空发动机叶片五轴联动加工中心1台、叶轮加工五轴联动加工中心1台、机匣加工五轴联动加工中心1台、超硬材料盘类零件加工精密数控车床1台、细长轴类双主轴双刀塔车削中心1台。
  (1)叶片五轴联动加工中心。工作台直径φ320mm;X、Y、Z轴行程:300mm、250mm、640mm;定位精度0.006mm,重复定位精度0.003mm;A、C轴定位精度7″,重复定位精度3″;主轴最高转速:24000r/min;直线轴移动速度30m/min;在线测量精度0.006+0.06×L/1000mm。
  (2)叶轮加工五轴联动铣削加工中心。工作台直径:φ480mm,X、Y、Z轴行程:1100mm、500mm、300mm,定位精度0.008mm,重复定位精度0.004mm;A、B轴定位精度8″,重复定位精度4″;加速度1g;最大扭矩130Nm;最高转速:15000r/min;移动速度:X、Y、Z轴48 m/min、40 m/min、40 m/min。
  (3)机匣加工五轴联动加工中心。工作台尺寸:800×800mm,X、Y、Z轴行程:1400mm、1200mm、1400mm;定位精度0.006mm,重复定位精度0.003mm;A、B轴定位精度6″,重复定位精度3″;摆动轴摆动范围:A轴-60°~+90°,B轴360°回转;主轴最高转速8000r/min; 直线轴移动速度32m/min。
  (4)盘类零件超硬数控车。机床主轴跳动:≤0.0003mm,X/Z轴重复定位精度:0.0002mm,运动控制分辨率:0.01μm;最高转速:6000 r/min;回转直径:φ200mm;X、Y轴行程:300mm;直线轴移动速度:15m/min。
  (5)长轴类零件双主轴双刀塔车削中心。最大加工直径:φ200mm;第一、第二主轴最高转速: 5000 /5000 r/min;快速进给(X/Z轴)≥42/42 m/min;主轴径向跳动≤0.001 mm;主轴轴向跳动≤0.002mm ;进给分辨率0.0002 mm;刀塔的重复定位精度1.6″;零件最大加工长度1500mm。
  (7)完成中小型航空发动机叶片、叶轮、机匣、盘、轴类等5类零件各10件以上的应用验证,机床MTBF≥1500h,Tk≥15000h;五轴联动机床要进行S试件切削,精度满足标准要求;其中至少有2台采用国产数控系统、国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配两种,不包括自制及集团内部单位配套部件)和国产刀具。
  (8)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
  (9)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
  (10)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
  (11)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
  (12)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
  3、研究内容
  掌握中小型发动机关键零件加工机床的结构分析优化技术、多轴动态误差调试与补偿技术、五轴联动机床驱动参数优化技术、高精度静压主轴技术、双驱技术、叶片和机匣零件的自适应夹具技术、叶片叶轮测量技术、叶轮叶片铣削加工及难加工材料盘、轴类车削加工工艺优化与刀具优选技术等研究;提高中小航空发动机叶轮、叶片、机匣、盘、轴类零件的加工效率和质量。
  4、实施期限
  2013年1月-2015年12月
  5、课题设置及经费要求
  拟支持1项课题研究;中央财政投经费主要用于产品关键技术研究、性能测试、工艺技术研究与检测验证;自筹与地方配套资金合计数与中央财政经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
  中央财政投入经费支持方式:前补助。
  6、申报条件
  课题牵头单位应为国内航空发动机制造企业,具有上述领域的研究基础,具备较强的专业研发团队和完善的试验、研究和开发条件。申报单位须针对指南提出的全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报年度课题单位应具备的可靠性研究基本条件);参加本项课题五轴联动加工机床研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。

课题8 大型航空发动机机匣成套装备

  1、研究目标
  针对航空发动机机匣的加工特点,研发适合航空发动机机匣加工特点的国产高效加工及检测装备,掌握此类设备的设计、制造、检测和系统集成等关键技术,主要功能、技术参数与精度指标达到当前国际先进水平。
  2、考核指标
  研制立式车铣复合加工中心 1台、五轴镗铣加工中心 1台和大型五轴测量装置1台。
  (1)立式车铣复合加工中心
  用于航空发动机机匣内外表面的车削加工和端面形状铣削以及孔系加工。
  加工工件直径φ2500mm,高度1800mm;主轴转速:低速 2-40r/min,高速 40-120r/min;主轴最大扭矩:≥67000Nm,主轴功率:≥30kW ;铣削头扭矩 ≥1000 Nm,铣削头转速:≥4500r/min; 定位精度: 0.01mm; 重复定位精度:0.005mm;机床验收标准VDI;快速移动速度:32m/min;空间任意位置在线测量误差:0.01+8*L/1000;刀库容量≥32把;具有在机测量功能,实现加工尺寸的快速高效测量。
  (2)五轴镗铣加工中心
  用于航空发动机机匣零件的外轮廓形状铣削、型面及端面装配孔镗铣加工;
  工作台:2500×2500mm;最大转速:≥6000r/min;主轴扭矩:≥1400 Nm;主轴功率:≥37kW;回转A轴转动范围:+110°/-110°,轴扭矩:≥1400 Nm;回转C轴:360°;C轴扭矩:≥1400 Nm;X/Y/Z快速速度:32m/min;A轴快速速度:6r/min;C轴快速速度:5r/min;X/Y/Z定位精度: 0.01mm; X/Y/Z重复定位精度:0.005mm;A轴定位精度:5″;A轴重复定位精度:3″;C轴定位精度:8″;C轴重复定位精度:5″;机床验收标准VDI;在线测量误差:0.01+8*L/1000mm;联动轴数:5轴; 刀库容量:≥60把;具有在机测量功能。
  (3)大型五轴测量装置
  用于航空发动机机匣零件几何特性检测。
  测量范围:X轴3000mm;Y轴2000mm;Z轴1500mm;C轴0-360°;B轴0-360°;精度:空间测量精度0.004+4*L/1000mm;旋转轴定位精度2″;装备功能:实现Y轴双驱动机构;可实现两旋转轴无极分度;可激光扫描测量与接触测头互换。
  (4)加工出至少两种典型机匣零件10件以上;机床MTBF≥1500h,Tk≥15000h;五轴镗铣加工中心要进行S试件切削,精度满足标准要求;其中至少有1台采用国产数控系统、国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配三种,不包括自制及集团内部单位配套部件)和国产刀具,完成一套国产数控系统的在线测量模块。
  (5)每一台(套)机床、数控系统、功能部件交付用户使用前,应分别在机床(系统、部件)制造企业处分别进行2000小时以上、10000小时以上、10000小时(刀库100万次)以上的模拟实际工况运行试验,并编写试验报告。
  (6)课题牵头单位应对投入实际使用的每一台(套)机床、数控系统、功能部件的运行故障予以记录,并形成故障统计和分析报告。
  (7)满足用户使用要求,所有设备在用户处实际应用一年以上方可申请验收。
  (8)形成10项以上技术标准(企业标准、行业标准、国家标准)、10项以上发明专利。
  (9)课题牵头单位建立起不少于15人的专职研发团队和技术合作组织,新增具有高、中级职称的技术人员和技术工人20人以上。
  3、研究内容
  掌握设计、制造和检测技术;结构分析与优化技术;双驱技术、伺服优化技术、动态精度调试与补偿技术;高温合金加工工艺技术的研究,形成国产刀具在国产设备上加工参数数据库;机匣在机测量技术的研究;
  4、实施期限
  2013年1月-2015年12月
  5、课题设置及经费要求
  拟支持1项课题研究;中央财政投经费主要用于产品关键技术研究、性能测试、工艺技术研究与检测验证;自筹与地方配套资金合计数与中央财政经费比例不低于1:1,其中地方配套资金不低于中央财政投入经费的20%。
  中央财政投入经费支持方式:前补助。
  6、申报条件
  课题牵头单位应为国内航空发动机制造企业,具有上述领域的研究基础,具备较强的专业研发团队和完善的试验、研究和开发条件。申报单位须针对指南提出的全部研究内容和考核指标进行申报。牵头申报与参与单位均应提供单位前期开展可靠性工作的证明材料(具体要求参见附件:数控机床专项申报年度课题单位应具备的可靠性研究基本条件);参加本项课题研究的每一个数控机床主机企业均应提交本单位制造的五轴联动加工机床“S试件”检测报告(至少1份,由国家级或行业级检测机构出具)。原则上申报课题的参与单位不超过5家,支持具备前期良好合作基础的“产学研用”联合申报(参与单位可提交在本课题研究领域与牵头单位前期合作研究的证明材料)。

课题9 航空发动机整体叶盘高效强力复合数控铣床

  1、研究目标
  针对航空发动机整体叶盘类复杂零件加工,研发整体叶盘高效强力复合数控铣床,大幅提高整体叶盘加工精度、效率和表面质量,显著降低制造成本;掌握设计、制造、综合性能检测等关键技术;主要技术参数、可靠性与精度稳定性达到当前国际同类产品水平,并形成批量生产能力。
  2、考核指标
  (1)加工产品范围为φ500~1000mm整体叶盘高效强力复合数控铣床研制,并在实际生产中应用,采用国产数控系统和国产功能部件(丝杠、导轨、转台、刀库、主轴五类部件中至少选配两种,不包括自制及集团内部单位配套部件);机床MTBF:1500小时;机床Tk:15000小时。
  设备技术指标如下:


第 [1] [2] [3] [4] [5] [6] [7] [8] [9] 页 共[10]页
上面法规内容为部分内容,如果要查看全文请点击此处:查看全文
【发表评论】 【互动社区】
 
相关文章